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ABSTRACT
Service providers are often reluctant to support anonymous
access, because this makes it hard to deal with misbehav-
ing users. Anonymous blacklisting and reputation systems
can help prevent misbehaving users from causing more dam-
age. However, by the time the user is blocked or has lost
reputation, most of the damage has already been done. To
help the service provider to recover from abuse by malicious
anonymous users, we propose the vote-to-link system.

In the vote-to-link system, moderators (rather than a sin-
gle trusted third party) can cast votes on a user’s action if
they deem it to be bad. After enough moderators have voted
on the action, the service provider can use these votes to link
all the actions by the same user within a limited time frame
and thus recover from these actions. All the user’s actions
in other time frames, however, remain unlinkable.

To protect the voting moderators from retaliation, we
also propose a (less efficient) variant that allows modera-
tors to vote anonymously. We implemented and evaluated
both variants to show that they are practical. In particu-
lar, we believe this system is suitable to combat malicious
Wikipedia editing.

CCS Concepts
•Security and privacy → Privacy-preserving proto-
cols; Pseudonymity, anonymity and untraceability; Privacy
protections;
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1. INTRODUCTION
Many websites either completely disallow anonymous ac-

cess or block anonymous users from making changes—for
example, Wikipedia does not allow edits by users using the
Tor network.1 While there are benefits to allowing anony-
mous access, websites apparently feel that the cost in terms
of abuse outweighs these benefits.

In this paper we present the vote-to-link system. It shifts
the balance between the costs and benefits of anonymous
access. The system allows fully anonymous actions, while, at
the same time, enabling linking of a malicious user’s actions
to make it much easier to recover from abuse. The vote-to-
link system is constructed in such a way that, after at least k
moderators mark an action as bad, the system can identify
all other actions by the same user within a limited time
frame (which we call an epoch). Without the cooperation
of at least k moderators, users’ actions remain anonymous
and unlinked.

To further reduce the impact of linking a user’s actions—
the judgement might have been erroneous, or a user’s earlier
actions might have been benign—the linking is limited to a
predefined time window. Note that even if many moderators
are malicious, the worst they can do is link a user’s actions
within epochs, never across epochs, nor can they directly
deanonymize her.

A leading example: Wikipedia.
To see why linking an abusive user’s edits within a lim-

ited time frame is useful, we return to the example of edit-
ing Wikipedia. We wish to emphasize that it makes sense
for editors to be anonymous—for example when they edit
controversial articles. However, this anonymity also enables
abuse by anonymous editors that change pages incorrectly.

To reduce abuse, Wikipedia could deter users from being
abusive. For example, Wikipedia could block abusive users
from further accessing the system (for example, BLAC [28]

1https://en.wikipedia.org/wiki/Wikipedia:Advice to users
using Tor accessed July 4, 2016. Naturally, Wikipedia also
does not allow registering sock puppet accounts via Tor
(that would defeat the purpose of blocking Tor in the first
place). While registering accounts outside of Tor is possible,
even those accounts are normally not exempt from the Tor
block (see https://en.wikipedia.org/wiki/Wikipedia:IPBE,
accessed July 4, 2016).



allows a service provider to block anonymous users without
identifying them). Alternatively, it could use a reputation
system that reduces an abusive user’s reputation so that
making edits in the future becomes harder. Or, it could
even fully deanonymize abusive users in a name-and-shame
fashion. However, when such measures fail to actually deter
a user from being malicious, she can still do a lot of damage.
Our vote-to-link system helps mitigate this damage.

A combination of four factors ensures that undeterred
users can still do a lot of damage. One, actual people are
needed to detect abuse, so, time passes before the first viola-
tion is detected and the deterrent is effected. Two, this delay
is exacerbated if only a small percentage of actions is bad,
requiring moderators to examine many edits before finding
one abusive edit. Three, until the first violation is detected,
the abusive user is free to continue acting anonymously (and,
these actions are, by nature of the anonymity, unlinkable).
Four, an abusive user can perform many actions, as rate
limiting would also adversely affect honest users.2

The vote-to-link system reduces the damage by invalidat-
ing the second and third factor: after sufficiently many mod-
erators agree that a particular edit is bad, all that user’s
edits within a time frame (maybe 24 hours is appropriate
here) become linkable. Hence, the moderation effort can be
focussed on those edits that are already highly suspect.

While the actions of abusive editors can be linked (after
enough moderators vote to do so) to make it easy to find all
other abusive actions by that user, the anonymity of honest
users is guaranteed: actions are unlinkable if there are too
few votes. Moreover, the identity of an editor is never re-
vealed. To the best of our knowledge this is a novel approach
to combat malicious edits.

Our contributions.
Our first contribution is the idea of a vote-to-link scheme.

At a high-level it works as follows. For every transaction
a user wants to perform at a service provider (for example,
editing a Wikipedia page), she must create a linking token.
The linking token is bound to her cryptographic identity.
Given this token, it is possible to identify all other trans-
actions by that user within the current epoch. A group
manager provides each user with at most one anonymous
credential certifying the user’s cryptographic identity.

To protect the linking token, the user encrypts it to the
moderators’ public key using a threshold encryption scheme.
Finally, to perform the transaction, she sends the encrypted
linking token and a zero-knowledge proof of correct encryp-
tion (i.e., she anonymously proves that the encrypted linking
token belongs to the identity in her anonymous credential) to
the service provider. Moderators can vote to link the user’s
transaction by partially decrypting the linking token (they
can do so without communicating with other moderators).
If, at some point in time, enough moderators have voted,
the service provider can decrypt the linking token (using the

2For example, the Wikipedia editor Giraffedata reg-
ularly makes about 80 edits within one hour (see
https://backchannel.com/meet-the-ultimate-wikignome-
10508842caad, last accessed July 5, 2016), while the most
prolific Wikipedia editor Ser Amantio di Nicolao averages
60 edits an hour assuming 8 hours of editing every day
of the year (see https://en.wikipedia.org/wiki/Wikipedia:
List of Wikipedians by number of edits, last accessed July
5, 2015), while his/her burst rate is most likely much higher.

partial decryptions provided by the moderators) and hence
link all the user’s actions within that epoch. The anonymity
of the user is guaranteed by distributing the voting power
invested in the moderators. The service provider itself has a
purely facilitating role; even if it is malicious, it cannot link
a user’s actions. We first introduce the high level structure
of our approach in Section 2, then describe preliminaries in
Section 3, and, finally, describe our vote-to-link scheme in
full in Section 4.

Our second contribution is to allow moderators to vote
anonymously (normally, the structure of the threshold en-
cryption scheme identifies voting moderators). While pro-
cedural measures can protect the votes to some extent, we
prefer to not rely on those to protect the identity of the
voting moderators. Hence, we have created a variant of our
vote-to-link scheme that allows moderators to vote anony-
mously at the cost of reduced efficiency. We present this
scheme in Section 5.

Our third and final contribution is an implementation of
our protocols, showing the practicality of our approach. We
present these results, and other practical considerations for
deploying a vote-to-link system, in Section 6.

While the vote-to-link scheme may seem similar to group
signatures with a distributed group manager—in fact, we
borrow ideas from group signatures—we wish to emphasize
that there are significant differences. First, the goal of our
scheme is to make a user’s actions linkable within an epoch,
rather than identify the signer of a single message. Second,
while distributed tracing managers allow a similar voting
process, they do not allow anonymous voting. We cover re-
lated work more extensively in Section 7, before concluding
this paper in Section 8.

2. SYSTEM DESIGN AND ASSUMPTIONS
In this section we describe the architecture of our vote-to-

link system, and its assumptions.

2.1 Architecture
The system consists of one group manager and several

users, service providers, and moderators, each with their
own role in the system. For clarity, we focus on a system
with only one service provider. In practice, it might be de-
sirable to have multiple service providers. Our solution is
easily extended in this direction.

Group Manager (GM) The group manager (GM) sets
up the system. It ensures that a user in the system
has at most one identity (for example, by requiring
that a user has access to a scarce resource, see below).
This ensures that the user cannot prevent linking of her
actions by creating new identities. To allow the user
to use this identity anonymously, the GM provides the
user with an anonymous credential.

User (U) Users access services offered by the service provi-
der. To enable access they need an anonymous cre-
dential from the GM. The users’ actions at a service
provider can be linked only when enough moderators
vote to enable this; normally, users’ actions are anony-
mous. Users are not assumed to be always online.

Service Provider (SP) The service provider allows users
to anonymously perform transactions (provided they
supply the correct information). As part of performing
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Figure 1: An example of the vote-to-link system with 3 users (U1, U2, U3), 3 moderators (M1,M2,M3) and a
threshold k = 2. The left side of the picture shows how the users and the moderators interact with the service
provider: users send transactions (t1, . . . , t7) to the service provider. The SP publishes these transactions in a
public record after checking their validity. The moderators monitor these transactions, and, whenever they
detect a malicious one, send a vote to link to the service provider (ψ1, ψ2, ψ3). The right side of the picture
shows a timeline of events at the service provider. After the SP receives k = 2 votes on transaction t2, it can
link it to the other transactions t4, t5 made by the same user in that epoch (note that t7 is not linked because
it was performed in another epoch).

the transaction, the user proves to the SP that she
has an anonymous credential. The service provider
determines the length of an epoch.

Moderator (M) The moderators monitor the users’ activ-
ities. They can vote to link the actions of a user. When
sufficient moderators have voted to do so, the user’s
actions within this epoch become linkable. The group
of moderators can be specific to each service provider.
Moderators are also not assumed to be always online.

The groups of users and moderators do not have to be mu-
tually exclusive. In fact, moderators may also be users, or
even, all users may be moderators as well.

Because the users’ credentials are anonymous, users can
use them to prove that they correctly constructed the en-
crypted linking tokens, without otherwise revealing anything
about their identity, nor becoming linkable because of using
the credential. To maintain anonymity, users (and modera-
tors) communicate with the SP via an anonymous channel.

Figure 1 gives an overview of an example vote-to-link sys-
tem. The figure shows how a user’s actions become linkable
as a result of the moderators’ votes. For clarity, we omitted
the group manager.

Only the service provider and the group manager are as-
sumed to be always online (but note that the only conse-
quence of a group manager being offline is that new users
cannot join). The moderators can cast votes completely non-
interactively. This ensures that the system can still function
even when the vast majority of the moderators are offline.

2.2 Threat model and security goals
Our system has two security goals (we formalize them in

Game 2 and Game 3 in Appendix B respectively).

1. User anonymity. As long as an adversary controls
at most k − 1 moderators, it cannot link an honest
member’s transactions with probability non-negligibly
better than random guessing.

2. Moderator anonymity. Users that collude with up
to n−2 moderators cannot determine the identity of a
non-colluding voting moderator with probability non-
negligibly better than random guessing.

The user anonymity goal strictly implies that users can-
not be identified either. Furthermore, for user anonymity, we
make no security assumptions about the users and the ser-
vice provider. In fact, even if they are completely malicious,
the anonymity of the users remains fully protected. Clearly,
we can allow at most k− 1 moderators to be malicious. For
moderator anonymity, we assume that the user performing
the transaction and the SP are not both malicious.

About Sybil attacks.
To ensure that all user’s actions can be linked after voting,

we require, like many other anonymous systems with an ac-
countability feature, that users have only one identity. Our
system by itself is not robust against Sybil attacks [12], and
protecting against them is outside the scope of this paper.

We do acknowledge that protecting against Sybil attacks
is difficult. However, some protection can be achieved when
the group manager issues credentials based on some scarce
resource (for example, IP address, phone number or na-
tional electronic ID card). See Henry and Goldberg for an
overview [18].

3. PRELIMINARIES
In this section we cover some of the (cryptographic) pre-

liminaries necessary to describe our schemes.

3.1 Notation and cryptography
We first introduce some notation. We write Zq, with q a

prime, to denote the field of integers modulo q. We write
r ∈R A to indicate that r is chosen uniformly at random
from the (finite) set A. Finally, we write [n] to denote the
set {1, . . . , n}.

Our protocols rely on Shamir’s secret sharing scheme [26],
so we often use Lagrange polynomials and coefficients. They
are defined as follows.

Definition 1 (Lagrange interpolation). Let I ⊂
Zq be a set of indices of cardinality k, then the corresponding
Lagrange polynomials are given by λIi (t) =

∏
j∈I,j 6=i

t−j
i−j .

Any polynomial f(t) ∈ Zq[t] of degree k−1 can then be inter-
polated by k points (i, f(i)), i ∈ I, as f(t) =

∑
i∈I λ

I
i (t)f(i).

We define the Lagrange coefficients as λIi = λIi (0). For a



polynomial f as before, we have f(0) =
∑
i∈I λ

I
i f(i).

We use a simplified version the notation of Camenisch and
Stadler [8] to denote zero-knowledge proofs. More specifi-
cally, we write

SPK{(x, y) : A = gx ∧B = gxhy}(m)

to denote the non-interactive proof of knowledge of the val-
ues x and y, such that A = gx and B = gxhy over the
message m obtained using the Fiat-Shamir heuristic [13].
The verifier only learns the validity of this proof and the
values of A,B, g, h, but not of the values before the colon, x
and y, of which knowledge is being proven.

3.1.1 Bilinear maps
Consider a pair of cyclic groups (G1,G2), both of prime

order q, with generators g, h respectively. We call such a pair
a bilinear group pair when there exists a bilinear map ê :
G1 ×G2 → GT mapping these groups into a group GT such
that: (1) the map is bilinear, i.e., for all a, b ∈ Zq we have
ê(ga, hb) = ê(g, h)ab; (2) the map is non-degenerate, i.e.,
ê(g, h) is a generator of GT ; and (3) the map is efficiently
computable. Denote by H : {0, 1}∗ → G1 a cryptographic
hash function mapping strings to G1.

3.1.2 Cryptographic assumptions
The security of our schemes relies on a number of crypto-

graphic assumptions which we will briefly cover here.

Definition 2 (DDH problem). The Decisional Diffie-
Hellman (DDH) problem in a cyclic group G is defined as
follows. On input of a tuple (g,A = ga, B = gb, C = gc) ∈
G4 output ‘yes’ if c = ab and ‘no’ otherwise.

The following definition is the generalization of the orig-
inal Decisional Bilinear Diffie-Hellman problem [19] to the
asymmetric bilinear map setting.

Definition 3 (DBDH problem). The Decisional Bi-
linear Diffie-Hellman (DBDH) problem in a bilinear group
pair (G1,G2) with generators g1 ∈ G1, h1 ∈ G2, h2 ∈ G2, gT ∈
GT is defined as follows. Given ga1 , h

b
1, h

c
2, g

z
T output ‘yes’ if

z = abc and ‘no’ otherwise.

3.1.3 Anonymous credentials
Every user in the system is given an anonymous credential

to prove that they have joined the system and to assign a
unique identity to each user.

There are many methods to construct anonymous creden-
tials, one could use a system like U-Prove [5] or Idemix [7],
or directly construct them using an appropriate signature
scheme like BBS+ signatures [3]. Our schemes are agnostic
to the specific choice of credential scheme, so we just write
C(x) to denote a credential over the secret key x.

Credentials are issued by an issuer, in our case the group
manager, to a user. The user can then show a credential to
a service provider, who can determine that the user indeed
has a credential issued by an issuer. Our scheme requires
the following properties:

Unforgeability It is not possible for any party in the sys-
tem to forge a credential C(x) over a new private key
x without the help of the issuer.

Unlinkability The showing of a credential gives no infor-
mation about the owner to the service provider. In
particular, it is not possible for an adversary to dis-
tinguish between two users (of its choosing) when it is
shown a credential of one of them.

Zero-knowledge proofs The showing of a credential C(x)
can be combined with a zero-knowledge proof that
proves a statement about x.

3.2 CCA secure threshold encryption
To encrypt the linking tokens, we need need an encryption

scheme that is both verifiable—to ensure that the encrypted
linking tokens are well-formed—and threshold decryptable—
to allow the moderators to create decryption shares when
necessary. Finally, in our user anonymity game (see Game 2)
the adversary can request decryption shares of any cipher-
text except the challenge ciphertext. To ensure that it can-
not learn anything about the challenge ciphertext, we re-
quire CCA security.

In this section we show a variant of the Shoup and Gen-
naro’s TDH2 threshold encryption scheme [27] that can ver-
ifiably encrypt group elements, rather than bit strings. The
core of the original scheme is similar to hashed ElGamal
in a cyclic group G generated by g where the ciphertext
of a message m for a public key w = gκ is of the form
(c, u) = (m ⊕H(wr), gr). In our TDH2’ variant we replace
c with m · wr.

Scheme 1 (TDH2’). The setting of this scheme is in a
cyclic group G of prime order q. Let H ′ : {0, 1}∗ → Zq be a
cryptographic hash function. The encryption function takes
a label. This label is not encrypted, but it is bound to the
ciphertext. The decryptors use this label to decide whether
they want to decrypt the ciphertext. The scheme is given by
the following algorithms.

• TDH.KeyGen(n, k,G, g, q) The TDH.KeyGen algorithm
is run by a group of n decryptors. On input of the num-
ber of decryptors n, the threshold k and a cyclic group
G with generator g and prime order q the decryptors
proceed as follows. They jointly run a verifiable secret-
sharing protocol (for example using Pedersen’s verifi-
able secret-sharing algorithm [25]) to generate a secret
sharing polynomial f of degree k−1 such that decryptor
i holds exactly one share, κi = f(i), of the private key
κ = f(0) and such that the public key w = gκ and veri-
fication keys wi = gκi are publicly known.3 Moderator
i stores the decryption key δi = (i, κi). Next, the mod-
erators jointly generate a random generator ḡ ∈R G
and publish the public parameters (G, g, ḡ, q), the ci-
phertext space C = G × {0, 1}∗ × G2 × Z2

q, the public
key w, and the verification keys w1, . . . , wn.

• TDH.Enc(w,m,L) On input of a public key w, a mes-
sage m and a label L, the TDH.Enc algorithm creates
a ciphertext as follows. First, it generates r, s ∈R Zq
and sets

c = m · wr, u = gr, û = gs, v = ḡr, v̂ = ḡs.

3In this paper, we only use the verification keys to check the
validity of the user-generated TDH2’ key in Section 5. We
omit the verification of decryption shares as our schemes do
not require it.



Then, it calculates e = H ′(c ‖ L ‖ u ‖ û ‖ v ‖ v̂) and
sets d = s+ re. The ciphertext is ψ = (c, L, u, v, e, d).

• TDH.Dec(ψ, δi) On input of a ciphertext ψ = (c, L, u,
v, e, d) and a decryption key δi = (i, κi) the decryptor
first verifies that the ciphertext is well-formed. To this
end it calculates:

û = gdu−e v̂ = ḡdv−e

and checks that e = H ′(c ‖ L ‖ u ‖ û ‖ v ‖ v̂). If
this check fails, it returns ψi = (i,⊥). Otherwise, it
returns ψi = (i, ui) = (i, uκi).

• TDH.Combine(ψ, {ψi1 , . . . , ψik}) Given a ciphertext ψ
and a set of of k shares the combine algorithm proceeds
as follows. It tests the validity of its inputs: letting
I = {i1, . . . , ik}, the algorithm checks that |I| = k;
and, it checks that ψ is well-formed. It returns ⊥ if
either test fails. Otherwise, every decryption share ψi
is of the form (i, ui) for i ∈ I, so

m = c
∏
i∈I

u
−λIi
i

is the plaintext. Return m.

It is easy to verify that the scheme is correct, i.e., for
every message m and ciphertext ψ = TDH.Enc(w,m,L) and
for every set of k decryption shares ψi1 , . . . , ψik we have that
TDH.Combine(ψ, {ψi1 , . . . , ψik}, V K) = m. In Appendix A
we prove the following theorem.

Theorem 1. The TDH2’ scheme is CCA secure in the
random oracle model for H ′, assuming that the DDH as-
sumption holds in G.

3.3 ElGamal encryption
In our fully anonymous scheme, we use use ElGamal en-

cryption to encrypt the moderators’ decryption shares.

Scheme 2 (ElGamal encryption). The ElGamal en-
cryption scheme in a cyclic group G with generator g of
prime order q is defined as follows.

• KeyGen (G, g, q) Given a cyclic group G of order q gen-
erated by g, choose a private key x ∈R Zq and set the
corresponding public key h = gx. Return (x, h).

• Enc (m,h) To encrypt a message m ∈ G against a
public key h pick a randomizer r ∈R Zq and create the
ciphertext c = (c1, c2) = (m · hr, gr).

• Dec (c, x) To decrypt a ciphertext c = (c1, c2) using the
private key x compute m = c1/c

x
2 .

Due to ElGamal’s simple structure it is possible to ran-
domize a public key and to transform ciphertexts for this
randomized public key into ciphertexts for the original pub-
lic key. We use this in our fully anonymous protocol to hide
the identity of the moderators.

• Randomize(h, α) To randomize a public key h ∈ G us-
ing a randomizer α ∈ Zq compute h̄ = h · gα.

• Derandomize(c̄, α) To derandomize a ciphertext c̄ =
(c̄1, c̄2) that is encrypted against a randomized public
key h̄ = Randomize(h, α) with randomizer α, calculate
c = (c̄1/c̄

α
2 , c̄2).

It is easy to check that for h̄ = Randomize(h, α) and c̄ =
Enc(m, h̄) we have c = Derandomize(c̄, α) = Enc(m,h).

4. A VOTE-TO-LINK SCHEME
In this section we introduce our basic vote-to-link scheme.

We first present the idea, then given the full scheme, and,
finally, prove user anonymity.

4.1 The idea
We follow an idea by Nakanishi and Funabiki [24] to create

tokens that can be used to link a user’s actions. As a setting
we use a bilinear group pair (G1,G2) of prime order q with
ê : G1 × G2 → GT the corresponding bilinear map and
g ∈ G1, h ∈ G2 generators. Let x be the user’s secret key
andH : {0, 1}∗ → G1 a cryptographic hash function. We use
this hash function to transform a description of the epoch
ε (for example, ε could be the current date to get 24 hour
epochs) into a generator gε = H(ε).

The user’s linking token for epoch ε is given by r = gxε .
With each transaction, the user publishes auxiliary values
t1 = hz and t2 = ê(gε, h

z)x for a random z ∈R Zq. The
user’s linking token r—which is normally unknown—can be
used to link transactions by this user. To check whether
a transaction with auxiliary values t′1, t

′
2 was made by a

user with linking token r, the SP can simply check whether
ê(r, t′1) = t′2.

So, given the linking token, the SP can link the actions of
the user within an epoch. To enable linking when the mod-
erators vote to do so, the user creates an encrypted linking
token T = TDH.Enc(∆, r, τ) by encrypting the token r la-
beled with the transaction τ against the moderators’ public
key ∆ using the k-out-of-n threshold encryption scheme. To
ensure that the user cannot cheat, she has to prove in zero-
knowledge that T, t1, and t2 are correct and correspond to
her anonymous credential C(x) certifying her cryptographic
identity or secret key x.

If a moderator later feels that a transaction is inappro-
priate, the moderator can cast a vote to link the user’s ac-
tions by partially decrypting the encrypted linking token T .
When a sufficient number of decryption shares are published,
the vote passes, and the SP can use the decryption shares to
recover the linking token r, allowing the user’s transactions
to be linked.

4.2 Our scheme
We are now ready to formalize our vote-to-link idea dis-

cussed above.

Scheme 3 (Vote-to-link). Our vote-to-link scheme
with threshold k and n moderators is given by the follow-
ing algorithms.

• Setup(1`, n, k) To setup the system, the group manager
first runs SetupGM(1`) and then the moderators run
SetupModerators(1`, n, k).

• SetupGM(1`) The SetupGM algorithm is run by the
group manager responsible for adding users. The group
manager first sets up an anonymous credential scheme
with security level ` in which the GM is an issuer.
Next, it generates a bilinear group pair (G1,G2), both
of prime order q such that q is `-bits, with generators
g, h respectively, and a bilinear map ê : G1×G2 → GT
such that the DDH problem is hard in G1. It publishes
the public information for the anonymous credential
scheme, and a description of the groups, generators
and bilinear map.



• SetupModerators(1`, n, k) The moderators jointly run
the TDH.KeyGen(n, k,G1, g, q) algorithm. This gives
each moderator a voting key δi, and publishes a mod-
erator public key ∆.

• UserJoin() The UserJoin protocol is run by the group
manager and a user. The GM authenticates the user
and confirms that she is eligible to join the system. If
so, the GM issues a credential C(x) over the user’s
secret key x to the user. The group manager stores
additional information to ensure that the user only re-
ceives one credential.

• PerformTransaction(ε, τ) The PerformTransaction pro-
tocol is run between the user and a service provider.
Let x be the user’s secret key, ε the current epoch,
and τ the transaction that the user wants to perform.
The user calculates the current epoch generator gε =
H(ε) ∈ G1, generates z ∈R Zq, and calculates the
linking token r = gxε and auxiliary information t1 =
hz and t2 = ê(gε, h

z)x. Next, she creates the en-
crypted4 linking token T = TDH.Enc(∆, r, τ) and gen-
erates a signature proof of knowledge that she generated
all these values correctly:5

π = SPK{(C, x, z, α) : C(x) ∧ t1 = hz ∧ tx1 = hα∧
T = TDH.Enc(∆, gxε , τ) ∧ t2 = ê(gε, h)α}(τ). (1)

In this proof α = xz. The user sends the transaction
record t = (τ, T, t1, t2, ε, π) to the SP. The SP executes
the transaction if the proof π is correct. The SP stores
the transaction record t.

• VoteToLink(δi, t) On input of a transaction record t =
(τ, T, t1, t2, ε, π) and voting key δi the moderator checks
that the label in ciphertext T matches the transaction
τ . If the label is correct, it calculates the decryption
share ψi = TDH.Dec(T, δi) and sends the resulting de-
cryption share ψi to the service provider.

• Link(t, {ψi1 , . . . , ψik}) On input of k decryption shares
{ψi1 , . . . , ψik} and a transaction record t = (τ, T, t1,
t2, ε, π) the service provider recovers the linking token
r = TDH.Combine(T, ψi1 , . . . , ψik ) (or aborts if the de-
cryption fails). The SP now uses this linking token to
find all other transactions by the same user in epoch ε:
for each transaction t′ = (τ ′, T ′, t′1, t

′
2, ε, π

′) in epoch ε
the SP tests whether

ê(r, t′1) = t′2.

If the equation holds, the SP adds transaction τ ′ to the
list of transactions by the same user.

The vote-to-link mechanism is effected as follows. When a
moderator detects a bad transaction, it calls VoteToLink and
sends the resulting decryption share to the SP (the decryp-
tion shares are stored with the transaction). When the SP
has collected enough decryption shares it runs Link to find all

4It is essential that the user verifies that the moderators’
public key ∆ indeed belongs to the moderators.
5The part of the proof involving t1 and t2 has been adapted
from Nakanishi and Funabiki [24].

other transactions by the same user in that epoch.6 In addi-
tion, if a user’s linking token is recovered within the current
epoch, the SP can use the test in Link to block transactions
from that user for the remainder of this epoch by testing the
submitted t′′1 , t

′′
2 values.

Correctness of this scheme is easy to verify. The service
provider verifiers the proof π which ensures that the user
has a valid credential, that T contains an encrypted linking
token, and that the auxiliary values t1, t2 are well-formed.
Since credentials are unforgeable, a user is forced to cre-
ate linking tokens belonging to her own identity. Because
of the security of the revocation scheme by Nakanishi and
Funabiki [24], the linking tokens can be used to link all the
user’s transactions within this epoch.

4.3 User anonymity
We now show that well-behaving users remain anonymous.

More precisely, we show that unlinked users in epoch ε, i.e.,
users for which the linking token for epoch ε has not been
recovered, are anonymous. The full user anonymity game is
given in Appendix B, see also Section 2.2.

Theorem 2. The vote-to-link scheme has user anonymity
in the random oracle model provided that the DDH assump-
tion holds in G1 and the DBDH assumption holds.

Proof sketch. The proof consists of two steps. One,
because of the CCA security of TDH2’ encryption scheme
the adversary does not learn anything about the plaintext
of the encrypted linking token T . Hence, it does not learn
anything about the linking token. In fact, we can replace
the real encrypted linking token by a random one without
the adversary noticing. We use the random oracle to sim-
ulate the proof π. Two, because the linking token is un-
known, the DBDH assumption and the proof by Nakanishi
and Funabiki [24] ensures that the adversary cannot link
users through the auxiliary information either.

5. A VOTE-TO-LINK SCHEME WITH MOD-
ERATOR ANONYMITY

In this section, we present a scheme that allows the mod-
erators to vote anonymously. We first present the idea of
the scheme before describing the scheme in full.

5.1 The idea
In the scheme described in the previous section, moder-

ators cannot vote anonymously. This is because Shamir’s
secret sharing scheme is used (as part of the threshold en-
cryption scheme) to share the moderators’ private key κ.
That is, we create a polynomial f of degree k − 1 such that
f(0) = κ. Each moderator is then given a share (i, f(i))
as its decryption key. While partially decrypting typically
hides f(i), the index i (which identifies the moderator) is
essential to recover the plaintext.

To achieve full anonymity for the moderators, the user
and the service provider run a simple three step protocol.

6The SP should guide the voting process to prevent the sit-
uation where there are many bad transactions with only a
few votes. Instead, the SP should rank suspicious trans-
actions by the number of votes so that if a transaction is
indeed bad, the threshold is reached quickly. In fact, even
non-moderators could report bad actions to bring them to
the moderator’s attention more quickly.



In essence, the user and the SP run a small mix network,
ensuring that as long as the service provider and the user do
not collude, no party can determine the identity of the voting
moderators. The enable this protocol, each moderator has
a public key encryption key. The idea is as follows:

1. The service provider shuffles and randomizes the mod-
erators’ public keys and sends them to the user.

2. The user creates a new threshold encryption key and
encrypts its linking token against this new key. To fa-
cilitate decryption, she encrypts a shuffled decryption
share for each of the shuffled and randomized public
keys she received from the service provider.

3. The service provider unshuffles and derandomizes the
ciphertexts containing the encrypted decryption shares
and publishes them with the transaction record. Mod-
erators will simply decrypt their ciphertexts to recover
their decryption shares and cast their votes.

Assuming, for the moment, that both the user and the ser-
vice provider are honest, it is easy to see that this gives
anonymity for the voting moderators. First, because the ser-
vice provider shuffles and randomizes the moderators’ pub-
lic keys, the user does not know to which moderator it gave
which share. So, if a moderator reveals or uses a share, the
user does not learn anything about the identity of the mod-
erator. Second, because the user assigns random shares to
each moderator, the service provider does not learn which
moderator received which share. Hence, the service provider
cannot recognize the voting moderators either.

In practice, we cannot assume that the user is honest—she
might want to avoid consequences of bad behavior. There-
fore, the user has to prove that she acted honestly.

Similarly, we also cannot assume that the service provider
is honest. In particular, the SP can deanonymize the user
if it itself generated new keys for the moderators, hence the
service provider too needs to prove that it shuffled and ran-
domized the original public keys correctly.

5.2 Full anonymity for moderators
We now present a vote-to-link scheme where the modera-

tors are fully anonymous.

Scheme 4. The fully anonymous protocol is based on our
original vote-to-link scheme (see Scheme 3). We only show
the modifications.

• SetupModerators(1`, n, k) Each moderator i generates
an ElGamal key-pair (xi, hi) = KeyGen(G, g, q) and
publishes its public key hi. It privately stores its voting
key δi = xi.

• PerformTransaction(τ) The PerformTransaction protocol
is run between a user and a service provider on input
of a transaction τ . It proceeds in three steps.

Step 1. The user registers the transaction τ , the service
provider replies by sending a list of randomized and
shuffled moderator public keys ĥ1, . . . , ĥn, i.e., the SP
picks a permutation σSP : [n] → [n] and randomizers
αi ∈R Zq and sets:

ĥi = Randomize(hσSP (i), αi).

The service provider then sends ĥ1, . . . , ĥn to the user
together with a proof

πSP = SPK
{

((αi)i∈[n], σSP ) :

ĥi = Randomize(hσSP (i), αi)
}

(τ)

that it randomized and shuffled actual moderator keys,
see Appendix C for how to construct πSP .

Step 2. The user checks proof πSP and aborts if it is
incorrect.7 Then, she runs TDH.KeyGen(G1, g, q) to
create a fresh TDH2’ private key κ and public key w
with verification keys wi = gκi corresponding to the
decryption key shares (i, κi) (since she runs it by her-
self, she can immediately generate the secret-sharing
polynomial f). Next, she creates her encrypted link-
ing token T = TDH.Enc(r, w, τ) = (c, L, u, v, e, d) and
auxiliary information t1, t2, and proves that she did so
correctly by calculating proof π as in equation 1 in the
original protocol, except for the fact that she uses a
fresh key for the moderators.

Next, she encrypts decryption key shares for each of
the randomized public keys ĥ1, . . . , ĥn:

1. Let ψi = (i, ui) = TDH.Dec(T, (i, κi)) be the de-
cryption shares. The user generates an ElGamal
key-pair (x′, h′) = KeyGen(G, g, q) and encrypts
the decryption share’s components:8

ĉi = Enc(gi, ui;h
′)

She proves that these are generated correctly, i.e.,
that ui = uκi , using the following proof:

πa = SPK
{

(x′, (κi)i∈[n]) : h′ = gx
′
∧

∀i ∈ [n]
[
wi = gκi ∧ ĉi = Enc(gi, uκi ;h′)

]}
(τ).

2. She chooses a random permutation σU : [n]→ [n]
and permutes the ciphertexts ĉi according to σU :

c̃i = ĉσU (i)Enc(1, 1;h′),

and proves that she shuffled correctly:

πb = SPK
{

(σU ) :

∀i ∈ [n]
[
c̃i = ĉσU (i)Enc(1, 1;h′)

]}
(τ)

using, for example, Groth’s verifiable shuffle pro-
tocol [16].

3. Finally, the user reencrypts the shuffled cipher-
texts c̃i to the randomized and shuffled modera-
tors’ public keys ĥi to get ciphertexts ci and proves
that she did so correctly:

πc = SPK
{

((ji, κ
′
i)i∈[n]) : ∀i ∈ [n]

[
c̃i =

Enc(gji , uκ
′
i ;h′) ∧ ci = Enc(gji , uκ

′
i ; ĥi)

]}
(τ).

Here the user uses that she knows the content of
all the ciphertexts.

7In addition, as with the previous scheme, the user needs to
verify the authenticity of the moderators’ public keys.
8Throughout the remainder of this scheme, when we oper-
ate on tuples of messages, we simply write Enc(m0,m1;h)
instead of the longer (Enc(m0, h),Enc(m1, h)).



The user sends tU = (T, t1, t2, w, h
′, π, πa, πb, πc, (ĉi, c̃i,

ci, wi)i∈[n]) to the SP.

Step 3. The service provider receives tU and:

– it checks that the verification keys w1, . . . , wn and
w0 := w are consistent using Lagrange interpola-
tion. In particular, it sets I = {0, . . . , k− 1} and
checks that, for all i ∈ {k, . . . , n},

wi =
∏
j∈I

w
λIj (i)

j ;

– it verifies the correctness of the proofs π, πa, πb,
and πc; and

– it recovers ciphertext Ci for moderator i:

Ci = Derandomize(c
σ−1
SP

(i)
, α

σ−1
SP

(i)
), (2)

and publishes these together with tU as the trans-
action record.

• VoteToLink(δi, τ) Moderator i decrypts Ci using its vot-
ing key δi to recover the pair (gj , uκj ) for some j. The
moderator uses an algorithm like baby-step giant-step
to recover j (this only takes O(

√
n) time). Then, it

publishes (j, uκj ).

Anonymity of the scheme.
First, we show anonymity for the user. The user sets up

a completely new system for every transaction, but while tU
contains many values, these are either already present in the
original protocol (like the public key w and verification keys
wi) or zero-knowledge proofs. So, we only need to concern
ourselves with the ciphertexts. Of these, only moderator i
can decrypt Ci. This ensures that every moderator receives
at most one share, and hence guarantees user anonymity.

We already argued that the shuffling by both the user and
the service provider ensures anonymity for the moderators
as long as the user and the SP do not collude.

6. VOTE-TO-LINK IN PRACTICE
In this section we explain how to choose parameters, and

analyse the efficiency of our vote-to-link schemes.

6.1 Choosing parameters
The length of an epoch determines the utility of linking a

user’s action. Choosing a longer epoch ensures that a mali-
cious user’s actions become linkable over a longer time span.
Hence, it is easier to locate all other bad actions by that
same user. On the other hand, choosing longer epochs also
increases the invasiveness of linking actions. Special care
has to be taken when the decision to vote is very subjective.
Since a vote to link effectively reduces a user’s anonymity
to an epoch-dependent pseudonym, the length of an epoch
should be smaller in this case.

For our leading example, editing Wikipedia, we believe
that an epoch of 24 hours strikes a good balance: the system
can easily recover from bursty misbehavior, while inadver-
tent linking is not too damaging.

To reduce inadvertent linking to a minimum, moderators
and the voting threshold must be carefully selected. Ideally,
a system has only a few trusted moderators, in which case
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Figure 2: Running time of the total PerformTrans-
action protocol of the anonymous vote-to-revoke
scheme for a threshold k = 32, as well as running
times for the individual steps. As expected, the run-
ning time increases linearly in the size of n. (Com-
munication cost is not taken into account.)

the threshold can be small as well. If the number of mod-
erators cannot be kept low, the threshold should be set to
a sizable percentage of the number of moderators to ensure
that the ‘bad apples’ cannot influence the vote too much.

6.2 Prototype implementation
To evaluate the performance of our two schemes, we built

and tested a proof-of-concept implementation9 in C using
the RELIC cryptographic library [2].10 We implemented
only the protocols’ cryptographic parts, but the communi-
cation parts are easily added. We ran all experiments on a
single core of an Intel i5-6200U running at 2.30 GHz. Most
code can be optimized further, and is easily parallelizable.

We used BBS+ signatures [3] as anonymous credential
scheme (recent work [6] shows that these are also secure in
the type III pairing setting that our schemes require).

The non-anonymous vote-to-revoke scheme is very fast.
The PerformTransaction protocol takes about 5 ms for both
the user and the service provider. The size of a single trans-
action record is about 1 KiB. VoteToLink takes about 0.5 ms.
After the SP receives k votes, it recovers the linking token
in about 20 ms (for k = 32) and can then check about 2800
transactions per second against the recovered linking token.

Figure 2 shows the running times of the PerformTransac-
tion protocol for the anonymous protocol. The O(n) com-
plexity of the proofs11 causes a significant slow-down. How-
ever, a running time of 7 seconds for a large number of mod-
erators like 1024 is still practical. The size of the transaction
record increases linearly from 47 KiB for n = 64 to 732 KiB
for n = 1024. Moderators can run VoteToLink in 5 ms for
n = 1024.

7. RELATED WORK
Many systems have been developed that cover methods

for dealing with misbehaving users. Perhaps one of the most
well known approaches are group signatures [9], which allow

9https://github.com/wouterl/vote-to-link
10We setup RELIC to use an optimized 254 bits BN curve.
11We replaced the verification of the wi’s in step 3 by a O(n)
probabilistic variant in our prototype implementation, so the
complexity is independent of k.



group members to anonymously sign messages on behalf of
the group. We refer to for example Manulis et al. [23] for
an overview. An essential aspect to group signatures is the
ability to open or trace a signature to determine which group
member created it. Typically, this power rests with either
the group manager or a separate tracing manager.

Recent work has looked into creating group signatures
where the tracing manager is distributed among many par-
ties [14, 15, 22, 31]. Only when a certain number of parties
agree can the signer of a signature be traced, i.e., identified.
Another extension to group signatures is that of traceable
signatures [20], which allows the group manager to produce
tracing tokens that can be used to recognize signatures by
the same user—similar to our vote-to-link scheme. The nov-
elty of our scheme is the combination of the idea of a dis-
tributed tracing manager—the moderators in our case—and
the linking of a user’s actions within a limited time window
(in the traceable signatures scheme [20] linking is global).

Many recent group signature schemes also offer revoca-
tion: giving a revocation manager the ability to block mis-
behaving users. In particular, we wish to highlight Nakan-
ishi and Funabiki’s scheme [24]. It offers backwards unlink-
able revocation by using revocation tokens that are different
for every epoch. Upon revocation the tokens for all future
epochs are published. We employ this mechanism, however,
the revocation token for the current epoch is instead used
to temporarily link a user’s actions.

Also outside the realm of group signatures researchers
looked into methods for deterring misbehavior. For example,
the Nymble system seeks to block misbehaving Tor users,
but uses a trusted party to do so [29]. The blacklistable
anonymous credentials system (BLAC) [28] instead blocks
users without using a trusted party. In both cases the goal
is to simply block the misbehaving user. But, as we have
indicated, often other methods are required to recover from
abuse. If this is the case, our scheme can be used on top of
such an anonymous blocking scheme.

Anonymous reputation systems like RepCoin [1] and Anon-
Rep [30] offer another method to hold users accountable for
their actions. Their behavior is reflected in their reputation.
While RepCoin only supports positive feedback, AnonRep
also allows actions to be downvoted. In both cases, the
change in reputation only affects future actions. Hence, past
misbehavior remains unidentified, contrary to our system.

Desmedt and Frankel were among the first to mention
threshold cryptosystems and threshold encryptions [11]. In
this paper we created a verifiable variant of the more re-
cent Shoup and Gennaro [27] scheme which is CCA secure.
Of more recent interest is the scheme by Delerablée and
Pointcheval [10] which allows encryptors to precisely select
the threshold under which the message is to be encrypted.
To make this possible, a trusted party—similar to the group
manager in group signatures—assigns decryption keys to de-
cryptors. This makes this scheme not applicable to our sce-
nario because we do not want such an all-powerful party
to exist. Another threshold encryption scheme is the one
by Libert and Yung [21], which is secure against adaptive
adversaries and is secure in the standard model. The down-
side is that they have to rely on a less common setting—a
composite order bilinear group. Furthermore, the message
is embedded in the target group, making it impossible to
apply the linking mechanism which itself relies on pairings.

Either by design or as a result of the specific construction,

these threshold cryptosystems identify the decryptors—the
moderators in our scheme. In most, this is a direct result
of using Shamir’s secret sharing scheme. There has been
some research into anonymous secret sharing schemes, but
none of these are applicable to our scenario. Blundo and
Stinson’s anonymity of secret sharing schemes [4] merely
deals with the theoretical optimization of secret share sizes
when you have to include the identity of the share-holder
in the share. The shares themselves may still identify the
share-holder, in fact, the Shamir share (i, f(i)) (rather than
just f(i)) is ‘anonymous’ by their definition. Guillermo et
al. present some truly anonymous schemes [17]—they prove
that given the shares you cannot determine the share-holders
from which these shares originated. However, the schemes
they present are theoretical and lack efficient secret recov-
ery algorithms. This makes it impossible to use them to
construct an anonymous threshold cryptosystem.

8. CONCLUSIONS
In this paper we have introduced a new efficient vote-to-

link scheme in which a group of moderators can decide to
link a user’s actions within an epoch when they detect abuse.
We think that this scheme is especially useful in combina-
tion with an anonymous blocking scheme like BLAC: BLAC
ensures that the user cannot continue her abuse, while the
vote-to-link system ensures that abuse prior to the block can
be revealed if the moderators decide this is necessary.

The concept of linking a user’s actions within epochs also
sets our solution apart from the open mechanism of group
signatures, that always work on a single signature—and fu-
ture ones in case of revocation—rather than identifying a
set of signatures belonging to the same user, and traceable
signatures, that do not limit the tracing capabilities.

In addition to this, we introduced a less efficient, but still
practical variant that offers anonymity for the moderators in
addition to anonymity for the users at the cost of efficiency.
We believe that this enables interesting scenarios, in partic-
ular if the moderators could otherwise experience retaliation
because of their actions, or could be coerced into acting. We
do wonder if it is possible to build a non-interactive fully
anonymous version of our scheme. In effect, this would give
an anonymous threshold cryptosystem.
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APPENDIX
A. CCA SECURITY OF TDH2’

The proof of security for the original TDH2 scheme strictly
relies on the hash-function used to create the ciphertext el-
ement c = m ⊕ H(wr). Since we do not have such a hash
function, we give a new proof for the following theorem.
But, before we can do so, we need to define the CCA secu-
rity game for threshold encryption schemes. We specify the
game directly for our TDH2’ scheme.

Game 1 (Threshold CCA security [27]). The thresh-
old CCA game between an adversary and the challenger pro-
ceeds as follows.

Setup phase The adversary chooses the number of decryp-
tors n and the threshold k. It also chooses k − 1 de-
cryptors it wants to corrupt.12 The challenger runs the
TDH.KeyGen(n, k,G, g, q) algorithm. It gives the pri-
vate decryption keys of the k − 1 corrupted servers to
the adversary, and keeps the others for its own use.

Query phase In the query phase, the challenger can make
any TDH.Dec queries of any of the non-corrupted host
with ciphertexts and labels of its choosing.

Challenge phase At some point the adversary chooses mes-
sages m0,m1 ∈ G and a label L and sends them to the
challenger. The challenger randomly picks b ∈R {0, 1}
and sends ψ = TDH.Enc(w,mb, L) to the adversary.

Restricted query phase The adversary can make Decrypt
queries as before, except at ψ.

Output phase Finally, the adversary outputs a bit b′ as
its guess for b.

12Note this is the static model where the to be corrupted
servers have to be announced up front.



The adversary wins if b′ = b.

We now give a small lemma that we will use in our proof.

Lemma 1. The implicit proof of knowledge in TDH.Enc
can be simulated in the random oracle model for H ′.

Proof. Consider the zero-knowledge proof in TDH.Enc
(given by e and d). Given any u, v ∈ G proceed as follows.
Generate a random e, d ∈ Zq and set

û = gdu−e v̂ = ḡdv−e.

Then, using the fact that we operate in the random oracle
model, back patch H ′ such that e = H ′(c ‖ L ‖ u ‖ û ‖ v ‖
v̂). It is easy to see that this proof verifies. Also, since û, v̂
are random and generated by us, the back patching fails (i.e.,
because the adversary already queried the hash function on
this precise input) with negligible probability.

Proof of theorem 1. Recall, the ciphertext is given by
ψ = (c = m · wr, L, u = gr, v = ḡr, e, d), where (c, u) forms
the actual encoding part, and (v, e, d) the proof of correct-
ness. This proof proceeds in two steps. First, we show that
an adversary cannot detect that we replace the correct v
component in the challenge ciphertext with a random ele-
ment from G, provided the DDH assumption in G holds.
Second, we show that we can also replace the correct c com-
ponent with a random element from G without the adver-
sary detecting this, again, provided the DDH assumption in
G holds. Clearly in the latter case the ciphertext is essen-
tially random, so the adversary does not have an advantage.
This proves CCA security. We now give the details.

We first prove that we can replace v in the challenge
ciphertext with a random element from G. Assume that
an adversary exist that can detect whether v has been re-
placed by a random element. We show how we can use such
an adversary to solve a DDH instance. We simulate the
entire game honestly, except for the challenge query. Let
(g,X, Y, Z) = (g, gx, gy, gz) be a DDH instance in G. Our
goal is to decide whether z = xy or not. To do so, we will
encode this problem into v. If z = xy then v is correctly
formed, otherwise it is random. Thus, any algorithm that
can decide on the well-formedness of v can be used to solve
the DDH-problem.

We setup the system as in the TDH.KeyGen(n, k,G, g, q)
algorithm, with one exception. Instead of generating ḡ ran-
domly we pick β ∈R Zq and set ḡ = Y β . Clearly, ḡ is a
random generator from G as required. Let κ be the pri-
vate key. Obviously, we can answer all decryption queries
honestly, as the challenger knows all the required keys.

Now we show how to answer the challenge query. Pick
a random element α ∈R Zq and set u = Xα, so r = xα.
Then, c = m · uκ is correctly formed. We let v = Zαβ .
Now, if z = xy then v = Zαβ = (gyβ)xα = ḡxα = ḡr as
required. Otherwise, v is a random element in G. The proof
of knowledge we simulate as per Lemma 1. So the simula-
tion is perfect, and hence any adversary that can distinguish
between a correctly formed v and a random element can be
used to solve the DDH-problem.

Now that we have seen that we can replace the v element
with a random element under the DDH assumption, we pro-
ceed by replacing the c component with a random element.
Again, we assume that there exist an adversary that can de-
tect whether c is correctly formed, given that v has already
been replaced by a random element.

This time, the setup is more complicated. Again, we will
use a DDH instance (g,X, Y, Z) in G. Let g be the generator.
This time, we let the public key w = X, so κ = x (but,
we do not know κ). Assume, w.l.o.g., that the corrupted
servers are numbered 1, . . . , k − 1. Choose their key-shares
randomly κ1, . . . , κk−1 ∈R Zq, and let wi = gκi be their
corresponding verification keys. Let I = {0, 1, . . . , k − 1},
then for k ≤ j ≤ n we have

wj = wλ
I
0 (j)

k−1∏
i=1

w
λIi (j)
i ,

by Lagrange interpolation. Furthermore, we pick a random
element α ∈R Zq and set ḡ = wα. This allows us to an-
swer decryption queries, because the proof of knowledge es-
sentially forces the adversary to give us ḡr = (wr)α. This
completes the setup.

We will now show how to answer decryption queries for
server j, with k ≤ j ≤ n. Let ψ = (c, L, u, v, e, d) be the ci-
phertext. If the ciphertext is not valid, simply return (j,⊥).
If the ciphertext is valid, then with overwhelming proba-
bility v = ḡr, and hence v1/α = wr = uκ. We now use
Lagrange interpolation on the set I = {0, 1, . . . , k − 1} to
find uj :

uj = vλ
I
0 (j)/α

k−1∏
i=1

uκiλ
I
i (j).

Finally, we show how to deal with a challenge query of
two messages m0,m1 ∈ G and label L. First, pick a bit
b ∈R {0, 1} and set u = Y , and v ∈R G (by our first step,
this is as the adversary now expects). Finally, set c = mb ·Z.
Now, if z = xy then c is correctly formed as before, otherwise
c is random. Any adversary that distinguishes between a
well-formed c and a random c breaks the DDH assumption.

We have seen how, in two steps, we can modify the pro-
tocol in such a way that the ciphertext gives no information
about the plaintext. Hence, the adversary cannot win.

B. ANONYMITY GAMES
In this section we formally define user anonymity and

moderator anonymity using the following two security games.

Game 2 (User anonymity). The following anonymity
game is between an adversary A and a challenger. The game
proceeds in five phases. Each user in the system is identified
by a user identification number uid of the adversary’s choos-
ing. The challenger keeps track of a set of honest users UH
and a set of users UC that are under the adversary’s control.

Setup phase At the start of the game the adversary in-
forms the challenger about the number of moderators
n and the threshold k it wants to use. In addition,
the adversary indicates a set C ⊂ {1, . . . , n} of cardi-
nality k − 1 of moderators it wants to corrupt. The
challenger runs SetupGM to setup the group manager
and SetupModerators to setup the moderators, where the
challenger controls the uncorrupted moderators, while
the adversary controls the corrupted moderators in C.
Finally, the challenger sets UH = ∅ and UC = ∅.

Query phase In the query phase the adversary can make
the following queries:

AddU (uid) The adversary can make an AddU(uid)
query to request that a user with identifier uid is



added to the system. The challenger creates this
user and runs UserJoin on behalf of this user with
the GM. The challenger stores the user’s private
information and the credential. It adds uid to UH .

JoinU (uid) The adversary makes a JoinU(uid) query
to request that a user it constructed, i.e., the ad-
versary chooses the keys, joins the system. To this
end, the adversary runs the UserJoin protocol—on
behalf of the user—with the GM—controlled by the
challenger. The new user will have identifier uid

and the challenger adds uid to UC .

CorruptU (uid) The adversary can request to corrupt
user with id uid ∈ UH . The challenger looks up the
user’s private information and credential and gives
them to the adversary. It also adds uid to UC and
removes uid from UH .

TransactSP (uid, ε, τ) To request that a user with uid ∈
UH (the adversary can simulate this query for cor-
rupted users) runs the PerformTransaction(τ) proto-
col for epoch ε where the adversary acts as SP,13 the
adversary can make a TransactSP(uid, ε, τ) query.
The adversary receives all the information that the
SP would normally receive, including the transac-
tion record t.

VoteToLink (j, t) The adversary makes a VoteToLink(j,
t) query to request the decryption share ψj from
moderator j 6∈ C. In response, the challenger runs
VoteToLink(δj , t) on behalf of moderator j and re-
turns the result to the adversary.

Challenge phase Eventually the adversary will select two
users with identifiers uid0, uid1 ∈ UH , a transaction τ
and an epoch ε. The challenger picks a bit b ∈R {0, 1}
and acts as if the adversary called TransactSP(uidb,
ε, τ). Let t be the corresponding transaction record.

Restricted query phase After the challenge query the ad-
versary can continue to make queries as before, with the
following restrictions. It is not allowed to call CorruptU
on the users uid0, uid1 nor is it allowed to make Vote-
ToLink queries involving t (it can already create k − 1
ballots because of the corrupted moderators it controls).

Output phase Eventually the adversary will output a guess
b′ of bit b. The adversary wins if b = b′.

At any point in time the adversary can run Link (because
anyone can run this algorithm).

Game 3 (Moderator anonymity). The moderator
anonymity game is a modification of the user anonymity
game (see Game 2), again between an adversary and a chal-
lenger. It proceeds in four phases:

Setup phase At the start of the game the adversary in-
forms the challenger about the number of moderators n
and the threshold k it wants to use. The challenger runs
SetupGM to setup the group manager and SetupModer-
ators to setup the moderators. Finally, the challenger
sets the set of corrupted moderators C = ∅.

Query phase The adversary controls all users. It can make
JoinU,TransactSP and VoteToLink queries as in the user

13Allowing the adversary to select the ε gives the adversary
slightly more power, in an actual system time does not run
backwards.

anonymity game (note that the VoteToLink queries are
restricted to uncorrupted moderators). Additionally, it
can make the following query:

CorruptM (i) The adversary request the corruption of
a moderator i. The challenger gives all keys of
moderator i to the adversary and adds i to C.

Challenge phase Eventually, the adversary requests votes
on a valid transaction record t of its choosing. To do so,
it sends t and two sets of moderators M0 and M1 to the
challenger. The challenger verifies that the transaction
record t is valid and new, that the sets are of equal
size, i.e., |M0| = |M1|, and that there are no corrupted
moderators in the query sets, i.e., (M0 ∪M1) ∩ C = ∅;
the challenger aborts otherwise. Finally, the challenger
picks a bit b ∈ {0, 1} and then returns VoteToLink(i, t)
for each moderator i ∈Mb.

Restricted query phase The adversary can make JoinU
and TransactSP queries as before. The VoteToLink(i, t)
query can only be made on non-challenge transaction
records.

Finally the adversary outputs a guess b′ for bit b. The ad-
versary wins if b′ = b. We say the voting scheme has full
moderator anonymity if no adversary can win this game.

C. SHUFFLING RANDOMIZED KEYS
In the first step of the fully anonymous vote-to-link pro-

tocol, the SP shuffles randomized moderator keys. Just as
for the user’s proof of shuffling, the SP uses Groth’s verifi-
able shuffle protocol [16] to construct proof πSP , however,
the randomization of the moderators’ public keys using Ran-
domize complicates this proof slightly.

The trick to seeing why we can apply Groth’s protocol is
to reinterpret the Randomize function in a special ElGamal
encryption scheme. In particular, let ĝ ∈R G1 be a random
generator, and g ∈ G1 the corresponding public key. Then
the encryption of m ∈ G1 is Enc′(m, g) = (m ·gβ , ĝβ), where
β ∈R Zq. Note that when ĝ is truly random the ciphertexts
cannot be decrypted.

Now, we reinterpret the original public keys as ciphertexts
in this scheme, i.e., hi becomes Hi = Enc′(hi, g) = (hi, 1)

(i.e., we use β = 0). Similarly, we can reinterpret ĥi =
Randomize(hσSP (i), αi) as

Ĥi = HσSP (i) · Enc′(1, g) = (hσSP (i) · gαi , ĝαi),

where encryption Enc′(1, g) uses ephemeral key αi. Hence,

Ĥ1, . . . , Ĥn are simply shuffled and randomized versions of
the original ciphertexts H1, . . . , Hn. And this is exactly
what we can prove using Groth’s verifiable shuffle protocol.


