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Abstract—Aggregation of time-series data offers the possibility
to learn certain statistics over data periodically uploaded by
different sources. In case of privacy sensitive data, it is desired
to hide every data provider’s individual values from the other
participants (including the data aggregator). Existing privacy
preserving time-series data aggregation schemes focus on the
sum as aggregation means, since it is the most essential statistics
used in many applications such as smart metering, participatory
sensing, or appointment scheduling. However, all existing schemes
have an important drawback: they do not provide verifiable
outputs, thus users have to trust the data aggregator that it
does not output fake values.

We propose a publicly verifiable data aggregation scheme for
privacy preserving time-series data summation. We prove its
security and verifiability under the XDH assumption and a widely
used, strong variant of the Co-CDH assumption. Moreover, our
scheme offers low computation complexity on the users’ side,
which is essential in many applications.

I. INTRODUCTION

Data aggregation is the process of collecting information
and expressing it in a summarized form, for instance for
the realization of statistical analysis. It is relevant in many
applications, such as smart metering (where, e.g., energy
providers compute statistics on energy consumptions in an en-
tire neighborhood), participatory sensing (where sensor read-
ings from participating mobile devices are aggregated to form
one large body of knowledge) and appointment scheduling
(where availability information is aggregated to find a timeslot
when everyone is available).

In these settings, privacy is often an important aspect. For
instance, smart meter data from a single household can reveal
the number of habitants and their working and sleeping habits;
the information collected by the nodes of a participatory
sensing network can be health or location related; and users of
an appointment scheduler might not want to share their own,
full time schedule. All these applications are based on time-
series data, i.e., data is time-dependent and the aggregation
is session-based: data providers periodically upload data and
the aggregator computes statistics for each time period. For
instance, when a smart meter records energy consumptions
hourly, a session consists of records from the same neighbor-
hood, in the same hour.

For such time-series data, Shi et al. [15] and Rastogi et
al. [14] created the first privacy preserving data aggregation
schemes of note. In [14], users send their data in an encrypted
form to the data aggregator only if they are queried. Then,
the data aggregator decrypts the sum of this data interacting
with the users but without learning the data of any individual
user. In [15], users send data on a session basis to a central
server, which computes the sum of the submitted data in each
session. One of the most important novelties they introduce is
that the data aggregator decrypts the sum without any further
interaction with any other participants (other than receiving
the data itself). During the computation the server does not
learn the individual values of the users and the computation
is successful only if each user contributes. The need for every
users’ contribution is a key aspect of ensuring user privacy:
when the statistics are based on the input of a small number
of users, the individual values can be easily approximated, in
particular if the standard deviation is known. The approach in
[15] only works with a small plaintext space (although being
sufficient in most applications, including those mentioned
above). This restriction is eliminated by Joye and Libert
[11], who provide a scheme to allow for a larger plaintext
space. The price of their improvement is the loss of non-
interactivity and the need for frequent updates of user secret
keys. While the decryption itself is still done solely by the
data aggregator without any further interaction, users update
their keys interacting with a trusted authority. Leontiadis et al.
[13] further improve the scheme. In their version the users can
update their keys themselves without interaction with a trusted
authority. This makes it possible to join or leave the scheme
without significantly increasing the communication costs: the
keys of different users are independent from each other, and
the key of the data aggregator is computed in every session
from the keys of the users present in that particular session.
However, they still use a semi-trusted data collector and users
have to interact with it while collecting data. Unfortunately, in
most applications users are not always online, so interaction
is an impractical requirement.

Besides the impractical user-interaction in [11], [13], and
[14], all the above mentioned schemes for private aggregation
of time-series data have an important drawback: they rely on

1



the trustworthiness of the server. An adversarial server can
output a fake sum without anyone noticing. Even though user
privacy is preserved in [15], [11], and [13], in most appli-
cations it is also essential that statistics revealed by the data
aggregator be reliable. For instance, in case of health-related
data, fake statistics can lead to incorrect medication or false
research results, which are obviously very dangerous. One
way to significantly improve reliability of a data aggregation
scheme is to make the aggregation result verifiable, mean-
ing that the aggregator outputs some “verification material”
together with the actual aggregate, proving that the result is
indeed the aggregate of the values sent by the users. In this
way, undesirable changes in the data at the server’s side (due
to maliciousness or malfunctioning) can be noticed by any
verifier.

In this work, we provide a publicly verifiable private aggre-
gation scheme for time-series data. Just like [15], we focus on
the most relevant statistics, namely the sum and we work in
the same non-interactive setting where a central server collects
encrypted data from users on a session basis, and it is only able
to decrypt the sum of the data in each session. Decryption is
possible only if every user contributes its data and the scheme
is non-interactive (except for the data upload).

Related Work. In a private time-series data aggregation
scheme, data providers send data periodically to a central data
aggregator, which can only decrypt aggregated statistics (and
nothing else) without any further interaction with the users
[15]. Each data provider sends data only once per period and
the data aggregator computes some statistics over data from
the same period, without learning anything about any data
provider’s individual data.

Besides the literature mentioned above, there are other
related schemes on privacy preserving data aggregation in
various application settings: Ács et al. [1], Chan et al. [8] and
Kursawe et al. [12] provide schemes for usage in the context
of smart metering. Furthermore, De Cristofaro and Soriente
[9] and Shi et al. [16] give a constructions for participatory
sensing applications and Bilogrevic et al. [4] and Bilogrevic
et al. [3] offer appointment scheduling schemes, but none of
them can deal with verifiability. Moreover, in [9] and [16] the
decryption is done separately from the data aggregation (just
as in [4] and [3]) and there are intermediary actors between the
data-providers and the data aggregator, which is often rather
impractical.

Outline of the paper. In Section II we define what a Publicly
Verifiable Private Data Aggregation (PV-PDA) scheme is and
in Section II-A we introduce a general security and verifiability
definition for PV-PDA schemes. In Section II-B we present
our scheme and in Section II-C we prove its security and
verifiability according to our security definition. In Section
III we analyse the computational costs of our scheme and
Section IV concludes the paper with a summary and a list of
open challenges.

Notation and preliminaries. We indicate vectors with
a bold font, the vector space (over Fp) generated by

(
v(1) = (v

(1)
1 , . . . v

(1)
m ), . . . , v(n)

)
, for n,m ∈ N is denoted

by 〈v(1), . . . , v(n)〉. The orthogonal complement of vector
subspace W is W⊥ and vw denotes the inner product of v
and w.

In the following, we will apply two widely used assump-
tions: the External Diffie-Hellman (XDH) assumption and a
strong variant of the Computational Co-Diffie-Hellman (Co-
CDH) assumption which we will both explain momentarily.

The XDH assumption [2] says that there exist two distinct
groups G1,G2 such that there exists an efficiently computable
bilinear map e : G1 × G2 → GT and the following four
problems are hard: the Discrete Logarithm Problem in both G1

and G2 (finding x from g, gx ∈ G), the Computational Diffie-
Hellman problem in both G1 and G2 (computing gxy from
g, gx, gy ∈ G), the Co-Computational Diffie-Hellman problem
(Co-CDH, finding gx ∈ G1 when g ∈ G1 and h, hx ∈ G2

are known) and the Decisional Diffie-Hellman Problem in G1

(DDH, given z, gx, gy ∈ G, deciding if z = gxy or not).
Recall that a DDH instance is a (G = 〈g〉, g, gx, gy, z)

tuple, where |G| = p, x, y ∈R Zp and z ∈ G. In the DDH
problem the challenger flips a random bit and generates a DDH
instance, where z = gxy if the random bit is 1, and z ∈R G if
the random bit is 0. The adversary outputs a bit b′ and wins
if b′ = b. The advantage of the adversary is | 12 − Pr[b′ = b]|.

To prove verifiability of the scheme, we also use the strong
Co-CDH problem, introduced by Boneh et al. [7]. It says
that in a type III bilinear group tuple (G1,G2,GT , p, e)
[10] (i.e. G1 6= G2 and there are no efficiently computable
isomorphisms G1 → G2 or G2 → G1) no polynomial time
algorithm can compute gα ∈ G1 given h, hα ∈ G2 and
f, fα, g ∈ G1. A game for the strong variant of Co-CDH is the
following. The challenger generates a type III bilinear group
tuple (G1,G2,GT , p, e), and chooses α ∈R Zp, h ∈R G2,
f, g ∈R G1 and sends h, hα, f, fα, g to the adversary. The
adversary is supposed to output g′ ∈ G1 and wins the game if
g′ = gα. The advantage of the adversary is |Pr[g′ = gα]− 1

|G| |.

II. PUBLICLY VERIFIABLE PRIVATE DATA AGGREGATION

A Publicly Verifiable Private Data Aggregation scheme (PV-
PDA) has two classes of actors: data providers (we refer
to them as users), who upload privacy sensitive data to a
central Service Provider (SP) who collects and aggregates
the data from the users without being able to learn at any
point, anything else about the original values other than the
aggregation itself. We focus on the sum of the users’ data as
the aggregate function.

In a PV-PDA scheme, users send data to the SP on a session
basis. Sessions are independent from each other, users can
send data only once per session, and messages from different
sessions cannot be aggregated together. At the end of each
session, the SP outputs the publicly verifiable sum of the
values from that particular session if, and only if every user
contributes his data.

The following definition formalizes the described function-
ality (for a conceptual visualization, see Figure 1).
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(1) (1)c :=Enc(PP,u ,K ,id,m )1 1

(2) (2)c :=Enc(PP,u ,K ,id,m )2 2

(n) (n)c :=Enc(PP,u ,K ,id,m )n n

Σ σ
(i)m

i=1

n

,(           )

Users                                       Service Provider

u1

u2

un

(1) (n)
Eval(PP,EK,id,c ,...,c )

Publicly veri-
fiable output

Figure 1: Structure of the PV-PDA scheme. In every session, users send their data encrypted to the Service Provider who
outputs the sum of the data together with a verification material σ (if and only if every user contributed).

Definition 1 (Publicly Verifiable Private Data Aggregation):
A Publicly Verifiable Private Data Aggregation is a tuple of
the following four polynomial-time algorithms:

- (PP,EK,K1, . . . ,Kn) ← Setup(λ, n): given a secu-
rity parameter λ and a number of users n as input, this
algorithm outputs public parameters PP , an evaluation
key EK and n user secret keys K1, . . . ,Kn.

- c(i) ← Enc(PP, ui,Ki, id,m(i)): given public parame-
ters PP , a user identifier ui ∈ [1, n], ui’s secret key Ki,
a session identifier id and a message m(i), it outputs a
ciphertext c(i).

- (M, σ) ← Eval(PP,EK, id, c(1), . . . , c(n)): given the
public parameters PP , the evaluation key EK, the ci-
phertexts c(1), . . . , c(n), and the session identifier id, it
outputs M =

∑n
i=1 m(i) and verification material σ.

- b← Verify(PP, id,M, σ): given the public parameters
PP , message M, verification material σ, and session
identifier id, it outputs a bit b. b = 1 means ‘acceptance’,
while b = 0 means ‘rejection’.

We require that for any (PP,EK,K1, . . . ,Kn)
obtained from the Setup algorithm and for any
id, the output of Verify(PP, id,M, σ) is 1 if
and only if (M, σ) ← Eval(PP,EK, id,Enc(PP,
u1,K1, id,m(1)), . . . ,Enc(PP, un,Kn, id,m(n))). We
emphasize that the verification material obtained from the
Eval algorithm is generated without using any of the user
secret keys.

A. Security and Verifiability

With regards to the security of a PV-PDA scheme, the
intuition is that while the SP is still able to learn the sum
for every session (as long as it has each user’s contribution),
it cannot learn anything about the individual values. To make
this a little more precise: (1) messages from any user in any
session are computationally indistinguishable, (2) messages
from different sessions are uncombinable (the SP cannot

compute their sum), and (3) it is impossible to compute the
sum of the messages sent to the SP if not every user contributes
its data in that session. Regarding verifiability, the SP should
be able to prove that the sum he outputs is indeed the sum of
the users’ values in that session. We leave collusion attacks
aside. The above described intuition is formalized in Definition
2 through a game-based security model.

Definition 2: A PV-PDA (Publicly Verifiable Private Data
Aggregation) scheme is secure and verifiable if there is no
PPT (probabilistic polynomial time) adversary A that has a
non-negligible advantage in the security parameter λ against
Game 1 or Game 2.
Game 1 (Security)
Setup. The challenger obtains (PP,EK, {Ki}ni=1) ←
Setup(λ, n) and gives EK and PP to the adversary A.

Query 1. A adaptively chooses a sequence of identifiers
and a sequence of n-tuples of messages, and sends them
to the challenger. The challenger encrypts the first tuple
of messages under the first identifier, the second tuple of
messages under the second identifier, etc. and sends these
encryptions to the adversary A. In each tuple, the i-th
message is encrypted with ui’s secret key for i = 1, . . . , n.

Challenge. A chooses a session identifier id ∈ {0, 1}λ
different from any identifier used in the first query
phase, and two n-tuples of messages with the same sum
and sends these to the challenger. The two tuples are
m0 =

(
m(1)

0 , . . . ,m(n)
0

)
and m1 =

(
m(1)

1 , . . . ,m(n)
1

)
and∑n

i=1 m(i)
0 =

∑n
i=1 m(i)

1 .
The challenger chooses b ∈R {0, 1} and sends the encryp-
tion of mb to the adversary A: cb =

(
c
(1)
b , c

(2)
b , . . . c

(n)
b

)
=(

Enc
(
PP, 1,K1, id,m

(1)
b

)
, . . . ,Enc

(
PP, n,Kn, id,m

(n)
b

))
Query 2. As in the first query phase, A adaptively chooses

and sends to the challenger a sequence of identifiers and a
sequence of n-tuples of messages, and requests the encryp-
tions. He is not allowed to choose the identifier id used in
the Challenge phase.

Output. The adversary outputs a bit b′ ∈ {0, 1}.
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The advantage of A is
∣∣Pr [b′ = b]− 1

2

∣∣. A PV-PDA scheme
is secure if it is secure against Game 1.

Game 2 (Verifiability)
Setup. The challenger obtains (PP,EK, {Ki}ni=1) ←
Setup(λ, n) and gives EK and PP to the adversary Averif.

Queries. Averif adaptively specifies a sequence of n-tuples
of messages. For j = 1, 2, . . . the j-th n-tuple is mj =(

m(1)
j , . . . ,m(n)

j

)
. The challenger chooses a correspond-

ing sequence of identifiers idj from {0, 1}λ. For j =

1, 2, . . . he computes c(i)j ← Enc(PP, ui,Ki, idj ,m
(i)
j ) for

i ∈ {1, . . . , n} and gives it to Averif (who can compute
(Mj , σj) ← Eval(PP,EK, idj , c

(1)
j , . . . , c

(n)
j ) where Mj

is the sum of the messages in the n-tuple mj).
Output. Averif outputs id′ ∈ {0, 1}λ, a message M′ and a

verification material σ′.
Averif wins the game if Verify(PP,M′, σ′, id′) = 1 and
either id′ 6= idj for any j used in the query phase (type-1
forgery), or id′ = idj for some j but M′ 6= Mj (type-2
forgery).

The advantage of Averif is the probability that Averif wins
Game 2. If a PV-PDA scheme is secure against Game 2 then
it is verifiable.

We briefly discuss how Game 1 captures the intuition on
security and Game 2 on verifiability. Recall that regarding
security we require (1) indistinguishability of messages, (2)
uncombinability of messages from different sessions, and (3)
that it is impossible to compute the sum, if not every user
contributes its data.

Concerning (1), it is enough to show indistinguishability
of messages from the same user in different sessions and
messages from different users in the same session, because
it already implies that messages from different users in differ-
ent sessions are indistinguishable (as computational indistin-
guishability is an equivalence relation, hence transitive), and
the same user in the same session never sends more than one
message.

If two messages were not indistinguishable in the same
session, the adversary in Game 1 would put one of them
in m0 and the other in m1 thus he could guess which one
was encrypted by the challenger and would win the game. If
an adversary could distinguish two messages from different
sessions, he would win Game 1 by querying one of them in
any query phase and putting the other in, say, m0.

Concerning (2), if an adversary can combine messages from
different sessions then he can easily win Game 1. He chooses
m0 and m1 such that m(l)

1 6= m(l)
0 and combines c(l)b from the

challenge phase with the messages from a session in the query
phase and he can see how the sum changes in that session, thus
finding out the message and m(l)

b from the challenge session.
Regarding (3), if an adversary can compute the sum of

some messages without having the ciphertext for all the
messages in that session then he can win Game 1 in the
following way. If he can compute

∑
i∈I m(i)

b for some index
set I ( {1, . . . , n}, he just have to choose m0 and m1 in such

a way that
∑
i∈I m(i)

0 6=
∑
i∈I m(i)

1 and he can tell what is b
by computing

∑
i∈I m(i)

b .
Regarding verifiability, recall that we require that the SP

can only produce a verification material for the sum of the
users’ values. If the verifiability property does not hold for a
scheme, that means that it is possible to produce a verification
material for a message different from the sum of messages,
thus winning Game 2.

B. Our Scheme

In this section we describe a concrete instantiation of a PV-
PDA scheme with n users. Recall that each user sends exactly
one encrypted message to the SP per session. Messages are
from message space M, which has polynomial size in the
security parameter λ. In the following, a message is formatted
as an N+n dimensional vector that contains the actual payload
in the form of N values and an n-dimensional unit vector
having a ‘1’ at position i for the i-th user and ‘0’s otherwise.
The unit vector part is required to prove verifiability.

We achieve verifiability by encrypting not the plaintext
values of the users but a signature of them. The signature
we use is based on the network coding signature scheme of
Boneh et al. [5], but we use other security assumptions and in
our case, when we have the signature for some values (with
the same session identifier), it is only possible to compute the
signature for the sum of these values, and not for any linear
combination of them (as in case of Boneh et al.). We stress
that the signatures for the individual values are never in the
plain in our scheme, only the signature for the sum of them
is revealed.

Every session is described by a unique and unpredictable
identifier that can contain some information about the scheme
itself (for instance, a time stamp or the type of value) and
some randomness.

In our scheme, the SP can only learn the sum of the users’
values per session and nothing else. Because the SP outputs
a verifiable result, the scheme works even with an untrusted
server.

Furthermore, the communication between the users and
the SP does not require interaction: the users can simply
upload their values. However, before the first session, the
initial setup is either interactive between the participants using
secure multi-party computation protocols, or it is performed
by a trusted Registration Authority that is no longer present
after distributing the keys and parameters of the scheme. For
simplicity, we use a Registration Authority in this paper.

Our PV-PDA scheme is described by the following four
algorithms.

- Setup(1λ, n,N): given a security parameter
λ, a number of users n, and the amount
N of values that can be contained in a
message, it outputs (PP,EK,K1, . . . ,Kn) with
PP = (G0, H1, H2, h, h

α, n, g1, . . . , gN+n), where
G0 = (G1,G2,GT , p, e) is a collection XDH group
parameters, |G1| = |G2| = |GT | = p prime and
e : G1 ×G2 → GT is an efficiently computable bilinear
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map. H1, H2 : {0, 1}∗ → G1 are cryptographic hash
functions, h is a generator in G2 and α is randomly
chosen from Fp. EK := k is the evaluation key with
k := k1 + · · · + kn for ki ∈R Fp (i = 1, . . . , n) and
Ki := (ki, α) ∈ F2

p is user ui’s secret key. Finally,
g1, . . . , gN+n ∈R G1 are random generators of G1.

- Enc(PP, ui,Ki, id,m(i)): given public parameters pa-
rameters PP , a user identifier ui with corresponding
secret key Ki, a session identifier id ∈ {0, 1}∗ and
a message m(i) = (m

(i)
1 , . . . ,m

(i)
N+n) ∈ FN+n

p , where
m

(i)
N+i := 1 and m

(i)
N+j := 0 (j 6= i, j = 1, . . . , n), it

outputs an encryption of the message m(i) as

c(i) = H1(id)
ki

 n∏
j=1

H2(id, j)
m

(i)
N+j

N∏
u=1

g
m(i)
u

u

α

.

- Eval(PP,EK, id, c(1), . . . , c(n)): given public parame-
ters PP , an evaluation key EK, and ciphertexts c(1), c(2),
. . . , c(n) of messages m(1), m(2), . . . , m(n) from session
id, it outputs M =

∑n
i=1 m(i) and a signature

σ(M, id) = H1(id)
−k

n∏
i=1

c(i).

- Verify(PP,M, σ(M, id), id): given public parameters
PP , message M, signature σ(M, id), and session identi-
fier id, it computes

γ1(PP, σ(M, id)) := e(σ(M, id), h) and

γ2(PP, id,M) = e

 n∏
j=1

H2(id, j)
MN+j

N∏
u=1

gMu
u , hα

 .

If γ1(PP, σ(M, id)) = γ2(PP, id,M) and the last n
coordinates of M are (1, . . . , 1) ∈ Fnp it outputs 1
(meaning acceptance), otherwise it outputs 0 (meaning
rejection).

For any (PP,EK,K1, . . . ,Kn) obtained from the
Setup algorithm and for any id, the output of
Verify(PP,M, σ(M, id), id) is 1 if and only if
(M, σ(M, id))← Eval(PP,EK, id, c(1), . . . , c(n)).

Note that in the Eval algorithm the SP will need to find
out the message M from the signature σ(M, id) which is done
by running the Verify algorithm on all possible messages
until it accepts the signature-message pair (exhaustive search).
Therefore, the number of possible values has to be polynomial
in the security parameter for the exhaustive search to run in
polynomial time. We note that this is a common property of
DL-based encryption schemes with additively homomorphic
properties (e.g., [6]).

While the Enc algorithm appears to perform N + n + 2
exponentiations and n evaluations of hash function H2, we
stress that taking advantage of the structure of m(i) (i.e., the
last n coordinates consist of n−1 zeros and a single one), H2

is only called once and, for N dimensional user inputs, there
are only N+2 exponentiations required. Thus, the extension of
the messages with a unit vector does not reduce performance
significantly and the number of operations required by the Enc
algorithm does not depend on the number of users.

To prove correctness of the same we have to show that for
public parameters PP , evaluation key EK, session id and
messages m(1), . . . ,m(n)

γ1(PP, σ(M, id)) = γ2(PP, id,M).

The left side of this equation is e (σ (M, id) , h) and the right
side equals e(

∏n
j=1H2(id, j)

MN+j
∏N
u=1 g

Mu
u , hα). Due to

the bilinearity and non-degeneracy of e it suffices to show
that

σ (M, id) =

 n∏
j=1

H2(id, j)
MN+j

N∏
u=1

gMu
u

α

.

By definition, the left-hand side is H1(id)
−k∏n

i=1 c
(i), which

(because of the choice of EK: k = k1 + · · ·+ kn) equals to

n∏
i=1

 n∏
j=1

H2(id, j)
m

(i)
N+j

N∏
u=1

g
m(i)
u

u

α

,

which is the same as the right-hand side, because Mj = m
(1)
j +

· · ·+m
(n)
j for j ∈ {1, . . . , N + n}.

C. Security of our scheme

Theorem 1: The PV-PDA scheme is secure in the random
oracle model if the XDH and the strong Co-CDH assumptions
hold in G0 = (G1,G2,GT , p, e).

We prove the scheme’s security under the XDH assumption
in Lemma 1 by showing that if there is a successful PPT
adversary against Game 1 in our scheme then there is a
successful PPT adversary against the DDH problem in G1

(which would contradict the XDH assumption). We prove
the scheme’s verifiability under the XDH and the Co-CDH
assumption in Lemma 2.

Lemma 1 (Security): Let A be a PPT adversary against
Game 1 in our scheme with advantage 1

2 +ε(λ) in the random
oracle model (ε is a non-negligible function). Then there is a
PPT adversary B against DDH in group G1 with advantage
1
2 + ε(λ)

2 .
Proof: We describe how to construct an adversary B that

solves the DDH problem interacting with A in Game 1. The
security analysis will view hash function H1 as a random
oracle, controlled by B.

Given a DDH instance (G1 = 〈g〉, g, gx, gy, z) where x, y ∈
Zp are chosen randomly and z ∈ G1, the challenger flips a
random coin b and sets z = gxy if b = 1 and z ∈R G1 if
b = 0. B has to decide if z = gxy or not, so he will output a
bit b′ and wins the game if b′ = b. For simplicity we use the
notation X := gx, Y := gy .
B first provides A with the public parameters PP =

(G0, H1, H2, h, h
α, n, g1, . . . , gN+n) and the evaluation key
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EK of our PV-PDA scheme. Here, G0 = (G1,G2,GT , p, e)
is a bilinear group tuple where the XDH assumption holds,
H2 : {0, 1}∗ → G1 is an arbitrarily chosen hash function,
h ∈R G2, α ∈R Fp, n is the number of messages per session
and g1, . . . gN+n ∈R G1. A also has access to hash function
H1, which is modelled as a random oracle. We describe later
how B controls it.

We choose the evaluation key EK = k ∈R Fp. The only
requirement for the user secret key ki (i ∈ {1, . . . , n}) is
that they form a random partition of k: k1 + · · · + kn = k.
ki is never known by adversary A, and it is only used
in computing H1(id)

ki , and now H1 is a random oracle
controlled by B . Therefore, as long as we make sure that
H1(id)

k1 · · ·H1(id)
kn = H1(id)

k, we do not need to know
ki for every i. This way, all the parameters and keys meet the
requirements of a PV-PDA scheme.

H1-queries.A can query H1 at any time. In order to answer
the queries consistently, B keeps an initially empty H list of
pairs 〈idi, ri〉, where ri ∈ Fp, and answers the queries to H1

with identity idi as follows:

• First query phase of Game 1:

– If idi is already in H list then B does a table look-up
in H list and sends Xri .

– If idi is not in H list yet then B chooses ri ∈R Fp
and checks if ri is in H list already. If it is, then B
chooses another ri randomly from Fp and repeats
the check, otherwise he answers with Xri and adds
〈idi, ri〉 to H list.

• Challenge phase of Game 1: In this phaseA has to choose
an identifier id for the challenge messages such that id 6=
idi for any idi queried earlier.

– To the query H1(id) B responds with X and adds
〈id, 1〉 to H list.

– To other queries, B responds the same way as in the
first query phase.

• Second query phase of Game 1: The same as the first
query phase.

B is now using A to break the DDH challenge (g, gx, gy, z),
where B has to output 1 if z = gxy . To avoid confusion, we
use the notation idi and mi for identifiers and messages in the
query phase, but id and md in the challenge phase.

First query phase of Game 1. A sends a sequence
id1, id2, . . . of identifiers and a sequence m1,m2, . . . of
n-tuples of messages to B, so mi contains all messages
from all n users in session idi. To encrypt the messages, B
picks random T2, . . . , Tn−1 ∈R G1 and sets T1 := z, sets
Tn := Xk

∏n−1
i=1 T

−1
i .

Therefore, we have chosen k1, . . . , kn implicitly, such that
they satisfy k1 + · · · + kn = k and such that Tj =
H1(id)

kj = Xkj (j = 1, . . . , n) for the challenge id and
T rlj = H1(idl)

kj = Xrlkj for a query identifier idl.

Then, for idl and ml =
(

m(1)
l , . . . ,m(n)

l

)
(for l ≥ 1) and

for j ∈ {1, . . . , n} the ciphertexts are computed as

c
(j)
l =T rlj

(
n∏
i=1

H2(idl, i)
m

(j)
l,N+i

N∏
u=1

g
m

(j)
l,u

u

)α
where rl is the randomness used in the response to the H1-
query for idl and m(j)

l = (m
(j)
l,1 , . . . , m

(j)
l,N+n).

Challenge phase of Game 1. A sends an identifier id
such that id 6= idi for any i, and two n-tuples of messages
m0 =

(
m(1)

0 , . . . ,m(n)
0

)
and m1 =

(
m(1)

1 , . . . ,m(n)
1

)
such

that
∑n
i=1 m(i)

0 =
∑n
i=1 m(i)

1 . B flips a coin d ∈R {0, 1} and
encrypts md under id in the following way.

c
(j)
d =Tj

n∏
i=1

H2 (id, i)
αm

(j)
d,N+i

N∏
u=1

g
αm

(j)
d,u

u for j ∈ {1, . . . , n}.

Second query phase of Game 1. The same as the first query
phase, only this time A cannot query the same id queried in
the challenge phase.

Output. At some point A outputs a bit d′.

We make the following claims:

Claim 1: With the knowledge of A, the ciphertexts he gets
in the query phase are indistinguishable from the ones that
the Enc algorithm would output. A can run the Eval and
the Verify algorithms on her inputs, and these will output
correct values.

Claim 2: With the knowledge ofA, the ciphertexts he gets in
the challenge phase are indistinguishable from the ones that
the Enc algorithm would output. A can run the Eval and
the Verify algorithms on her inputs, and these will output
correct values.

Claim 3: If b = 0 (z is a random element in G1), the
encryptions A gets in the challenge phase are information
theoretically secure so Pr[d′ = d|b = 0] = 1

2 (i.e., Pr[d′ 6=
d|b = 0] = 1

2 ). But if b = 1 (z = gxy) then the messages
are properly encrypted according to our PV-PDA scheme
and A has an advantage of 1

2 + ε(λ) to break Game 1:
Pr[d′ = d|b = 1] = 1

2 + ε(λ).
To complete the proof of Lemma 1 we only have to prove

Claim 1, 2 and 3, because if B chooses b′ = 1 when d′ =
d and b′ = 0 when d′ 6= d then he has a non-negligible
advantage against the DDH game. This is because (by Claim
3) Pr[b′ = b] = Pr[d′ = d|b = 1] + Pr[d′ 6= d|b = 0]

Claim 3
=

1
2

(
1
2 + ε (λ)

)
+ 1

2 ·
1
2 = 1

2 +
ε(λ)
2 and it is non-negligible being

ε(λ) and thus ε(λ)
2 also non-negligible.

Proof of Claim 1: In the first query phase, for l ≥ 1 and
j ∈ {1, . . . , n}, A will not be able to distinguish ciphertexts

c
(j)
l = T rlj

(
n∏
i=1

H2(idl, i)
m

(j)
l,N+i

N∏
u=1

g
m

(j)
l,u

u

)α
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from “real” cipertexts because he expects

H1(idl)
kj

(
n∏
i=1

H2(idl, i)
m

(j)
l,N+i

N∏
u=1

g
m

(j)
l,u

u

)α
,

where H1 is controlled by B who outputs Xrl for H1(idl),
i.e., T rlj = H1(idl)

kj .
A has every parameter to run Eval

(PP, k, idl, c
(1)
l , . . . , c

(n)
l ) which will output the same

(Ml, σ(Ml, idl)) from the ciphertexts c(j)l (for j∈{1, . . . , n})
received from B as it would compute from the ciphertexts
produced by the real Enc algorithm: it computes
σ(Ml, idl) as (Xrl)

−k∏n
j=1 c

(j)
l which is indeed∏n

i=1H2(idl, i)
α
(∑n

j=1m
(j)
l,N+i

) ∏N
u=1 g

α
(∑n

j=1m
(j)
l,u

)
u , and the

sum Ml is computed from this, using the Verify algorithm.
A can also run Verify(PP,Ml, σ(Ml, idl), idl) which

will output 1 because he gets

e

((
n∏
i=1

H2

(
idl, i

)(∑n
j=1m

(j)
l,N+i

) N∏
u=1

g
∑n
j=1m

(j)
l,u

u

)α
, h

)
,

for γ1(PP, σ(M, id)) and by the bilinearity of e, this is the
same as γ2(PP, idl,Ml). �

Proof of Claim 2: As the hash query H1(id) is answered
with a random element in G1, and due to the choice Tj =
H1(id)

kj , A is not able to distinguish ciphertexts c(j) sent by
B from ciphertexts output by the Enc algorithm with the same
parameters.
A has every parameter to run

Eval(PP, k, id, c(1), . . . , c(n)), and it outputs (M, σ(M, id))

correctly (M =
∑n
j=1 m(j)

d ). Indeed, similarly to the query
phase, A will compute σ(M, id) as X−k

∏n
j=1 c

(j), which is∏n
i=1H2(id, i)

α
(∑n

j=1m
(j)
d,N+i

)∏N
u=1 g

α
∑n
j=1m

(j)
d,u

u . Again, it
leads to the same M.

Adversary A can run Verify(PP,M, σ(M, id), id) which
will output 1 because e(σ(M, id), h) is equal to

e

((
n∏
i=1

H2 (id, i)

(∑n
j=1m

(j)
N+i

) N∏
u=1

g
∑n
j=1m

(j)
u

u

)α
, h

)
,

and by the bilinearity of e, this is the same as

e

(
n∏
i=1

H2 (id, i)

(∑n
j=1m

(j)
N+i

) N∏
u=1

g
∑n
j=1m

(j)
u

u , hα

)
.

�

Proof of Claim 3: When z = gxy , from T1 = z = Xy

we know that k1 = y and k1 + · · · + kn = k, therefore
gygk2 · · · gkn = gk and the encryption and the evaluation work
exactly the same way as in a real run of our PV-PDA scheme.
In contrast, when z = gxa for some a 6= y, then k1 = a and
while still k1+ · · ·+ kn = k, the equation gygk2 · · · gkn = gk

does not hold any more.
This concludes the proof of Claim 3 and Lemma 1. �

Lemma 2 (Verifiability): If A is a probabilistic, polynomial
time adversary with non-negligible advantage in Game 2
against our PV-PDA scheme then there exists a PPT adversary
B that can win the strong Co-CDH game with non-negligible
probability.

Proof: We can construct an adversary B that has a non-
negligible advantage in the strong Co-CDH game interacting
with A in Game 2 and we look at the hash function H2 as a
random oracle controlled by B.

Let the challenge be f, fα, g ∈ G1, h, hα ∈ G2 in the
bilinear group tuple (G1,G2,GT , p, e).
H2-queries. In order to answer the queries consistently,
B keeps an initially empty H list of pairs 〈(idj , i), rji〉 and
answers the query H2(idj , i) as follows.
• If it has already been queried, return H2(idj , i).
• If it has not been queried yet, nor has any encryption in

session idj been, then choose ζi, τi ∈R Fp and return
gζifτi .

• If encryption of any message with identifier idj has
already been queried, then return gζifτi , where ζi and
τi has already been chosen during the encryption.

We now simulate Game 2.
Setup: G1,G2,GT , p, e, h, hα are determined by the

challenge in the strong Co-CDH, H1 and n are chosen by
B just as the user secret keys k1, . . . , kn, α and the evaluation
key k =

∑n
i=1 ki. A random oracle controlled by B is used

instead of H2. B also chooses s1, t1, . . . , sN+n, tN+n ∈R Fp
and sets gi := gsif ti for all i.

Queries: When A queries an encryption for mj =

(m(1)
j , . . . ,m(n)

j ), where the last n coordinates of m(i)
j form

the i-th unit vector, B chooses an identifier idj ∈ {0, 1}λ
and checks if H2(idj , i) has already been queried for any i.
If it has already been queried, B aborts and the simulation
has failed. If not, B computes ζi := −

∑N
j=1 sjm

(i)
j , chooses

τi ∈R Fp and sets H2(idj , i) := gζifτi for i = 1, . . . , n).
Then he sets t := (t1, . . . , tN , τ1, . . . , τn) and computes
c
(l)
j = H1(idj)

kl(fα)m(l)
j t.

Output: If the simulation does not abort, A outputs
an identifier id′, a message M′ and the verification ma-
terial σ(M′, id′). If id′ has not been queried yet, then
B sets H2(id

′, i) := gζifτi (for i = 1, . . . , n), s :=
(s1, . . . , sN , ζ1, . . . , ζn) and t := (t1, . . . , tN , τ1, . . . , τn).
If M′s = 0 then B aborts, otherwise outputs g′ :=(
σ(M′,id′)

(fα)tM′

)1/(sM′)

.

As required, the responses to the hash queries and
g1, . . . , gN+n are all random elements in G1. The other
public parameters are also distributed identically to the public
parameters produced by the real Verify algorithm.

Now we only have to prove Claim 4, 5 and 6 to conclude
the proof of Lemma 2.

Claim 4: The ciphertexts output by B are indistinguishable
from the ones produced by Enc and A can successfully run
the Eval and Verify algorithms using the hash answers
computed by B .
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Claim 5: The probability that B aborts is negligible.
Claim 6: If A wins Game 2 then B also wins the strong

Co-CDH game.
To simplify notation, when it does not cause any confusion,

we will drop the index j of mj = (m(1)
j , . . . ,m(n)

j ) and we
refer to it as m = (m(1), . . . ,m(n)).

Proof of Claim 4: First we show that the ci-
phertext H1(idj)

kl(fα)m(l)t outputted by B is indistin-
guishable from the ciphertext that Enc would produce,
H1(idj)

kl
(∏n

i=1H2(idj , i)
m

(l)
N+i

∏N
u=1 g

m(l)
u

u

)α
. This, given

the H2 hash responses and the values of gu, equals

H1(idj)
kl

(
n∏
i=1

(
gζifτi

)m(l)
N+i

N∏
u=1

(
gsuf tu

)m(l)
u

)α
=

= H1(idj)
kl
(
gsm(l)

f tm(l)
)α

,

where sm(l) = 0 for l = 1, . . . , n (due to the careful choice
of the ζis), making this the same as the output of B.

As in Lemma 1, we only have to show that the Eval
algorithm outputs the same σ(M, idj) on a “real” input and
on the output of B. On a “real” input, Eval would output(
f tM)α = (fα)

Mt, while on the input received from B the
evaluation algorithm will output

H1(idj)
−k

n∏
l=1

c
(l)
j = H1(idj)

−k
n∏
l=1

H1(idj)
kl(fα)m(l)t =

= (fα)
∑n
l=1 m(l)t

which is (fα)Mt according to our notation.
Now we show that the verification algorithm ran by A will

accept the input he gets from B and the output of Eval, i.e.,
the equation

e (σ (M, idj) , h) = e

(
n∏
l=1

n∏
i=1

H2 (idj , i)
m

(l)
N+i

N∏
u=1

g
m(l)
u

u , hα

)
holds and M = (M1, . . . ,MN , 1, . . . , 1). As we have shown,
the left-hand side equals e((fα)Mt, h) and the right-hand side
is

e

(
n∏
l=1

gx(sm(l))fm(l)t, hα

)
,

which is e(fMt, hα) if sM = 0. By bilinearity and non-
degeneracy of e, these are the same. As the last n coordinates
of m(i) form the i-th unit vector for every i = 1, . . . , n and
M =

∑n
i=1 m(i), the last n coordinates of M are all 1. �

Proof of Claim 5: The simulation aborts in two cases:
if during an encryption query B chooses an id that he has
already chosen in either a hash query or an other encryption
query, or if sM’ = 0.

If the number of hash queries is qh and the number of
encryption queries is qe then the probability of id collision
failure is not larger than q2e

2λ
+ qeqh

2λ
, which is still negligible.

If A outputs a type-1 forgery, then id′ was not queried
earlier, so ζ1, . . . , ζn are independently uniform in Fp, even

conditioned on the view of A. So are s1, . . . , sN+n, thus
sM’ is also uniformly distributed in Fp (as M’ 6= 0). As a
conclusion, Pr[sM’ = 0] = 1/p.

If A outputs a type-2 forgery (so id′ = idj for some idj
used in an encryption query, but M′ 6= Mj), then, conditioned
on A’s view, s is uniform in 〈m(1)

j , . . . ,m(n)
j 〉⊥. As the

Verify algorithm accepts M′, we know that the last n coordi-
nates of it are all 1, which means that M′ /∈ 〈m(1)

j , . . . ,m(n)
j 〉,

otherwise it would be equal to Mj . Therefore sM′ is uniformly
distributed in Fp and equals 0 with probability 1/p. �

Proof of Claim 6: In the proof of Claim 4 we showed that
if the verification algorithm outputs 1 for the public parameters
given by B , M′, σ(M′, id′) and id′, then σ(M′, id′) =∏n
l=1 g

x(sm(l))
(
fm(l)t

)α
= gx(sM)(fα)Mt. As a consequence,

if sM′ 6= 0 then

g′ =

(
σ(M′, id′)
(fα)

tM′

)1/(sM′)(
gx(sM′)(fα)M′t

(fα)
tM′

)1/(sM′)

= gx.

This concludes the proof of Claim 4 and Lemma 2. �

III. PERFORMANCE ANALYSIS

The only operation (per session) the users have to perform
in our scheme is encryption of their input values. In case of
one dimensional inputs (which is the most common case),
the encryption requires only three exponentiations and two
hash function evaluations, making it suitable for devices
with relatively low computational power. The computational
complexity of the verification algorithm is also low, it requires
one hash function evaluation, two exponentiations and two
pairings. The only computationally heavy component of our
scheme is the evaluation algorithm which first combines the
ciphertexts from the users to form the verification material,
then runs the Verify algorithm a maximum of |M| times
(trying every possible value in the message spaceM), requir-
ing in total a maximum of 1+|M| hash evaluations, 1+2·|M|
exponentiations and 2|M| pairings. In practice, usually the SP
can find the result much quicker than running the verification
|M| times, by trying values similar to the results of previous
sessions.

The higher complexity of the Eval algorithm does not
drown the practicality of our scheme, because it is executed by
the SP who usually has much higher computational capacity
than the other participants.

Note that if the users’ data is N dimensional (thus they
encrypt N + n dimensional vectors), only the number of
exponentiations changes: Enc requires N +2, Eval requires
a maximum of 1+(N + 1) · |M|, and Verify requires N+1
exponentiations.

The above mentioned performance indicators are summa-
rized in Table I (for one dimensional inputs).
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Operation Algorithm
Enc Eval* Verify

Pairings - ≤ 2 · |M| 2
Exponentiations 3 ≤ 1 + 2 · |M| 2
Hash function
evaluation 2 ≤ 1 + |M| 1

Table I: Summary of the performance indicators of
the algorithms of our PV-PDA scheme, in case of
one dimensional data. *The indicated number is the
worst case, in most application settings it would be
significantly smaller.

IV. CONCLUSION

We constructed a new scheme for privacy preserving ag-
gregation of time-series data that allows for the evaluation
of the sum of users’ private inputs. In contrast to prior
solutions, the end result is publicly verifiable without assum-
ing a (semi-)trusted service provider, third parties, or user-
interaction. Verifiability and security are proven in the random
oracle model under widely used assumptions.

Verifiability of data aggregation is essential: without verifi-
ability, the trustworthiness of the output can be questionable.
We stress that being able to verify the correctness of the data
aggregation is even more important when the underlying to-
be-aggregated data are encrypted.

Our encryption algorithm only requires N + 2 exponentia-
tions (where N is the dimension of users’ data) and two hash
function evaluation which is little effort at the users’ side.
This is important in applications such as participatory sensing
and smart metering, where the user devices are resource
constrained.

Limitations of our system. Our system does not support a
large plaintext space or statistics other than the sum. Further-
more, it does not work in a dynamic setting (where users can
easily join and leave the system) and it cannot deal with node
failures (where users stop contributing). Intuitively, one might
propose to use a t-out-of-n approach to solve this problem.
However in a non-interactive scenario this is not possible in
a PV-PDA scheme: if the service provider could compute the
sum of any t users (for some t < n), he would be able to
figure out every individual value of the users by computing
the sum for all the users and for every combination of n− 1
users.

Colluding users can compute the sum of the rest of the users
but this is unavoidable in any scheme. They also do not have
any other additional power by colluding. If a user colludes
with the SP, then the verification is no longer trustworthy: the
SP can output any possible value (that does not contradict
with M) with a valid verification. The privacy of the users is
lessened the same way as it is in case of a user-user collusion.
However, we stress that any users’ individual value can only
be learnt if all the other users collude.

It is an interesting open challenge to construct a scheme that
solves (any of) the above mentioned limitations while staying
verifiable and non-interactive.
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